Support functionals and their relation to the Radon-Nikodym property
نویسنده
چکیده
In this paper, we examine the Radon-Nikodym property and its relation to the Bishop-Phelps theorem for complex Banach spaces. We also show that the Radon-Nikodym property implies the Bishop-Phelps property in the complex case. 1. Introduction. Let X be a complex Banach space and let C be a closed convex subset of X. The set of support points of C, written as supp C, is the collection of all points z ∈ C for which there exists nontrivial f ∈ X * such that sup x∈C |f (x)| = |f (z)|.
منابع مشابه
Characterization of the Radon-nikodym Property in Terms of Inverse Limits
In this paper we clarify the relation between inverse systems, the Radon-Nikodym property, the Asymptotic Norming Property of James-Ho [JH81], and the GFDA spaces introduced in [CK06].
متن کاملA Note on Scattered C*-algebras and the Radon-nikodym Property
Recently, Jensen [3], Lazar [4] and Rothwell [6] have investigated in detail the structure of scattered C*-algebras which can be regarded as the most elementary generalization of the finite dimensional involutive algebras. A C*-algebra si is called scattered if every positive functional of si is the sum of a sequence of pure functionals. The object of this note is to give a short proof of a nat...
متن کاملA characterization of sub-riemannian spaces as length dilatation structures constructed via coherent projections
We introduce length dilatation structures on metric spaces, tempered dilatation structures and coherent projections and explore the relations between these objects and the Radon-Nikodym property and Gamma-convergence of length functionals. Then we show that the main properties of sub-riemannian spaces can be obtained from pairs of length dilatation structures, the first being a tempered one and...
متن کاملThe near Radon-nikodym Property in Lebesgue-bochner Function Spaces
Let X be a Banach space and (Ω,Σ, λ) be a finite measure space, 1 ≤ p < ∞. It is shown that L(λ,X) has the Near Radon-Nikodym property if and only if X has it. Similarly if E is a Köthe function space that does not contain a copy of c0, then E(X) has the Near Radon-Nikodym property if and only if X does.
متن کاملDifferentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon Nikodym Property
In this paper we prove the differentiability of Lipschitz maps X → V , where X is a complete metric measure space satisfying a doubling condition and a Poincaré inequality, and V denotes a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new characterization of the differentiable structure on such metric measure spaces, in terms of directional derivatives in the direct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2004 شماره
صفحات -
تاریخ انتشار 2004